题目内容
18.已知x,y满足约束条件$\left\{{\begin{array}{l}{0≤x≤2}\\{x+y-2≥0}\\{kx-y+2≥0(k>0)}\end{array}}\right.$,若目标函数z=x+2y的最大值为10,则k的值为( )| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 2 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{{\begin{array}{l}{0≤x≤2}\\{x+y-2≥0}\\{kx-y+2≥0(k>0)}\end{array}}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x=2}\\{kx-y+2=0}\end{array}\right.$,解得B(2,2k+2).
化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$,
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过B时,直线在y轴上的截距最大,z有最大值为2+2(2k+2)=4k+6.
由4k+6=10,得k=1.
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
13.
学校组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲乙两位同学进行了8次测试,且每次测试之间是相互独立.成绩如下:(单位:个/分钟)
(1)用茎叶图表示这两组数据;
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于79个/分钟的次数为ξ,求ξ的分布列及数学期望Eξ.
(参考数据:22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32)
| 甲 | 80 | 81 | 93 | 72 | 88 | 75 | 83 | 84 |
| 乙 | 82 | 93 | 70 | 84 | 77 | 87 | 78 | 85 |
(2)从统计学的角度考虑,你认为选派那位学生参加比赛合适,请说明理由?
(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于79个/分钟的次数为ξ,求ξ的分布列及数学期望Eξ.
(参考数据:22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32)