题目内容

16.判断函数的奇偶性:
(1)f(x)=ln(1+e2x)-x;
(2)f(x)=$\left\{\begin{array}{l}{x(1-x),x≥0}\\{x(1+x),x<0}\end{array}\right.$.

分析 根据函数奇偶性的定义进行判断即可.

解答 解:(1)∵f(x)=ln(1+e2x)-x=ln(1+e2x)-lnex=ln$\frac{1+{e}^{2x}}{{e}^{x}}$=ln(e-x+ex),
∴f(-x)=ln(e-x+ex)=f(x),即函数f(x)为偶函数.
(2)∵f(x)=$\left\{\begin{array}{l}{x(1-x),x≥0}\\{x(1+x),x<0}\end{array}\right.$.
∴当x<0,-x>0,则f(-x)=-x(1+x)=-f(x),
当x>0,-x<0,则f(-x)=-x(1-x)=-f(x),
当x=0时,f(0)=0,
综上恒有f(-x)=-f(x),
即函数为奇函数.

点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网