题目内容
设,函数的定义域为集合。
求: (1);
(2),,
已知()且,则( )
A. B. C. D.
已知函数在其定义域上为奇函数.
(1)求的值;
(2)若关于的不等式对任意实数恒成立,求实数的取值范围.
在1L高产小麦种子中混入1粒带麦锈病的种子,从中随机取出20mL,则不含有麦锈病种子的概率为 .
设函数 ,则函数的定义域为 .
某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3、0.2、0.1、0.4,求:
(1)他乘火车或乘飞机去的概率;
(2)他不乘轮船去的概率
(3)如果他乘交通工具去的概率为0.5,请问他有可能是乘何种交通工具去的?
在直角坐标系中,直线l的参数方程为为参数) .以原点O为极点,以x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为,则直线l和曲线C的公共点有____________个.
(本小题满分12分)
已知函数,.设时取到最大值.
(1)求的最大值及的值;
(2)在中,角,,所对的边分别为,,,,且,求的值.
在三棱锥中,,底面是正三角形,侧棱与底面所成的角为,则该三棱锥外接球的体积为( )
A、 B、 C、 D、