题目内容
7.设A={x∈Z|-6<x<6},B={1,2,3},C={3,4,5},求:(Ⅰ)A∪(B∩C);
(Ⅱ)A∩∁A(B∪C)
分析 (Ⅰ)求出B与C的交集,找出A与交集的并集即可;
(Ⅱ)根据全集A,求出B与C并集的补集,与A求出交集即可.
解答 解:(Ⅰ)∵A={x∈Z|-6<x<6}={-5,-4,-3,-2,-1,0,1,2,3,4,5},B={1,2,3},C={3,4,5},
∴B∩C={3},B∪C={1,2,3,4,5},
则A∪(B∩C)={-5,-4,-3,-2,-1,0,1,2,3,4,5};
(Ⅱ)∵∁A(B∪C)={-5,-4,-3,-2,-1,0},
∴A∩∁A(B∪C)={-5,-4,-3,-2,-1,0}.
点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.
练习册系列答案
相关题目
15.下列说法正确的是( )
| A. | 命题“若lga>lgb,则a>b”的逆命题是真命题 | |
| B. | 若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题 | |
| C. | 命题“?x∈R,2x>0”的否定是“?x0∈R,2x≤0” | |
| D. | “x2=1”是“x=1”的充分不必要条件 |
19.已知命题p:?x∈R,x2+2x+2>0,则¬p是( )
| A. | ?x0∈R,x02+2x0+2<0 | B. | ?x∈R,x2+2x+2<0 | ||
| C. | ?x0∈R,x02+2x0+2≤0 | D. | ?x∈R,x2+2x+2≤0 |