题目内容
向量
,
满足:|
|=|
|=4,<
,
>=
,则|
-
|=( )
| a |
| b |
| a |
| b |
| a |
| b |
| π |
| 3 |
| a |
| b |
分析:可先求得|
-
|2=|
|2-2|
|•|
|•cos<
,
>+|
|2=16-2×4×4×
+16,从而可求得|
-
|.
| a |
| b |
| a |
| a |
| b |
| a |
| b |
| b |
| 1 |
| 2 |
| a |
| b |
解答:解:∵|
|=|
|=4,<
,
>=
,
∴|
-
|2=|
|2-2|
|•|
|•cos<
,
>+|
|2=16-2×4×4×
+16=16,
∴|
-
|=4.
故选A.
| a |
| b |
| a |
| b |
| π |
| 3 |
∴|
| a |
| b |
| a |
| a |
| b |
| a |
| b |
| b |
| 1 |
| 2 |
∴|
| a |
| b |
故选A.
点评:本题考查向量的模,关键在于要先求得|
-
|2,再开方即可,属于中档题.
| a |
| b |
练习册系列答案
相关题目