题目内容
6.己知x、y∈R,i是虚数单位,若x+yi与$\frac{2+i}{1+i}$互为共轭复数,则x+y=( )| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
分析 利用复数的运算法则、共轭复数的定义、复数相等即可得出.
解答 解:$\frac{2+i}{1+i}$=$\frac{(2+i)(1-i)}{(1+i)(1-i)}$=$\frac{3-i}{2}$,
x+yi与$\frac{2+i}{1+i}$互为共轭复数,∴x=$\frac{3}{2}$,y=$\frac{1}{2}$.
则x+y=2.
故选:D.
点评 本题考查了复数的运算法则、共轭复数的定义、复数相等,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
16.已知函数f(x)=x(1+|x|),设关于x的不等式f(x2+1)>f(ax)的解集为A,若$[-\frac{1}{2},\frac{1}{2}]⊆A$,则实数a的取值范围为( )
| A. | (-2,2) | B. | $(-\frac{5}{2},\frac{5}{2})$ | C. | $(-\frac{5}{2},-1)∪(1,\frac{5}{2})$ | D. | $(-∞,-\frac{5}{2})∪(\frac{5}{2},+∞)$ |
17.
我国自主研制的第一个月球探测器--“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是$\frac{R}{2}$,$\frac{5R}{2}$(如图所示),则“嫦娥一号”卫星轨道的离心率为( )
| A. | $\frac{2}{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
11.定义在[0,+∞)上的函数f(x),当x∈[0,2]时,f(x)=4(|x-1|-1),且对任意实数 x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1),若方程f(x)-log a x=0有且仅有三个实根,则实数a的取值范围是( )
| A. | [$\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$) | B. | ($\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$) | C. | ($\frac{1}{10}$,$\frac{1}{2}$) | D. | [$\frac{1}{10}$,$\frac{1}{2}$) |
15.设复数z=$\frac{(1+i)^{3}}{(1-i)^{2}}$,则$\overline{z}$=( )
| A. | 1+i | B. | -1+i | C. | 1-i | D. | -1-i |
16.在△ABC中,内角A,B,C的对边分别为a,b,c,a=3$\sqrt{2}$,b=2$\sqrt{3}$,cosC=$\frac{1}{3}$,则△ABC的面积为( )
| A. | 3$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | $\sqrt{3}$ |