题目内容
在数列{an}中,a1=
,an+1=
.
(1)计算a2,a3,a4,猜想数列{an}的通项公式并加以证明;
(2)求证:
+
+…+
≥
对一切n∈N*成立.
| 1 |
| 2 |
| 3an |
| an+3 |
(1)计算a2,a3,a4,猜想数列{an}的通项公式并加以证明;
(2)求证:
| a1 |
| 3 |
| a2 |
| 3 |
| an |
| 3 |
| 2n |
| n+11 |
分析:(1)数列{an}中,由a1=
,an+1=
,分别令n=1,2,3,依次求出a2,a3,a4,猜想数列{an}的通项公式并加以证明.
(2)由an=
,知
+
+…+
=
+
+…+
,故(
+
+…+
)[6+7+…+(n+5)]≥(1+1+…+1)2=n2,由此能够证明
+
+…+
≥
.
| 1 |
| 2 |
| 3an |
| an+3 |
(2)由an=
| 3 |
| n+5 |
| a1 |
| 3 |
| a2 |
| 3 |
| an |
| 3 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| n+5 |
| a1 |
| 3 |
| a2 |
| 3 |
| an |
| 3 |
| a1 |
| 3 |
| a2 |
| 3 |
| an |
| 3 |
| 2n |
| n+11 |
解答:解:(1)数列{an}中,∵a1=
,an+1=
,
∴a2=
=
,
a3=
=
,
a4=
=
.
由此猜想:an=
.
证明:由an+1=
,知
=
+
,
∴{
}是等差数列,
∴
=
+(n-1)×
=
,
∴an=
.
(2)∵an=
,
∴
+
+…+
=
+
+…+
,
(
+
+…+
)[6+7+…+(n+5)]≥(1+1+…+1)2=n2,
∴
+
+…+
≥
=
.
| 1 |
| 2 |
| 3an |
| an+3 |
∴a2=
3×
| ||
|
| 3 |
| 7 |
a3=
3×
| ||
|
| 3 |
| 8 |
a4=
3×
| ||
|
| 3 |
| 9 |
由此猜想:an=
| 3 |
| n+5 |
证明:由an+1=
| 3an |
| an+3 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 3 |
∴{
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| 3 |
| n+5 |
| 3 |
∴an=
| 3 |
| n+5 |
(2)∵an=
| 3 |
| n+5 |
∴
| a1 |
| 3 |
| a2 |
| 3 |
| an |
| 3 |
| 1 |
| 6 |
| 1 |
| 7 |
| 1 |
| n+5 |
(
| a1 |
| 3 |
| a2 |
| 3 |
| an |
| 3 |
∴
| a1 |
| 3 |
| a2 |
| 3 |
| an |
| 3 |
| n2 | ||
|
| 2n |
| n+11 |
点评:本题考查数列的通项公式的求法和证明,考查不等式的证明.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目