题目内容
抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是
A.4
B.3
C.4
D.8
(理科作)已知抛物线y2=4x的焦点为F,A、B为抛物线上的两个动点.
(Ⅰ)如果直线AB过抛物线焦点,判断坐标原点O与以线段AB为直径的圆的位置关系,并给出证明;
(Ⅱ)如果(O为坐标原点),证明直线AB必过一定点,并求出该定点.
抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,,垂足为K,则△AKF的面积是
B.
C.
下面给出的四个命题中:
①以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为;
②若,则直线与直线相互垂直;
③命题 “,使得”的否定是“,都有”;
④将函数的图象向右平移个单位,得到函数的图象。
其中是真命题的有 (将你认为正确的序号都填上)。
已知抛物线y2=4x的焦点为F,准线为l.过点F作倾斜角为60°的直线与抛物线在第一象限的交点为A,过A作l的垂线,垂足为A1,则△AA1F的面积是 ▲
抛物线y2=4x的焦点为F,A(x1,y1),B(x2,y2)(x1>x2,y1>0,y2<0)在抛物线上,且存在实数λ,使
(1)求直线AB的方程;
(2)求△AOB的外接圆的方程.