题目内容
15.数列{an}的首项a1=1,{bn}为等比数列且bn=$\frac{{a}_{n+1}}{{a}_{n}}$,若${b_{50}}{b_{51}}={2016^{\frac{1}{50}}}$,则a101=2016.分析 由已知结合bn=$\frac{{a}_{n+1}}{{a}_{n}}$,得到a101=b1b2…b100,结合b50b51=$201{6}^{\frac{1}{50}}$及等比数列的性质求得a101.
解答 解:由bn=$\frac{{a}_{n+1}}{{a}_{n}}$,且a1=1,得b1=$\frac{{a}_{2}}{{a}_{1}}={a}_{2}$.
b2=$\frac{{a}_{3}}{{a}_{2}}$,a3=a2b2=b1b2.
b3=$\frac{{a}_{4}}{{a}_{3}}$,a4=a3b3=b1b2b3.
…
an=b1b2…bn-1.
∴a101=b1b2…b100.
∵数列{bn}为等比数列,
∴a101=(b1b100)(b2b99)…(b50b51)=$({b}_{50}{b}_{51})^{50}=(201{6}^{\frac{1}{50}})^{50}=2016$,
故答案为:2016.
点评 本题考查了数列递推式,考查了等比数列的性质,是中档题.
练习册系列答案
相关题目
3.已知α∈(0,$\frac{π}{2}$),β∈(-$\frac{π}{2}$,0),cos($α+\frac{π}{4}$)=$\frac{1}{3}$,cos($\frac{β}{2}-\frac{π}{4}$)=$\frac{\sqrt{3}}{3}$,则cos($α+\frac{β}{2}$)=( )
| A. | $\frac{5}{9}\sqrt{3}$ | B. | -$\frac{\sqrt{6}}{9}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | -$\frac{\sqrt{3}}{3}$ |
20.若复数z满足z(1+i)=|1+$\sqrt{3}$i|,则在复平面内z的共轭复数对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
7.设函数f(x)=|x-a|,a∈R.
(Ⅰ)若a=1,解不等式f(x)≥$\frac{1}{2}$(x+l);
(Ⅱ)记函数g(x)=f(x)-|x-2|的值域为A,若A⊆[1,3],求a的取值范围.
(Ⅰ)若a=1,解不等式f(x)≥$\frac{1}{2}$(x+l);
(Ⅱ)记函数g(x)=f(x)-|x-2|的值域为A,若A⊆[1,3],求a的取值范围.
5.设曲线y=ax2-lnx-a在点(1,0)处的切线方程为y=2(x-1),则a=( )
| A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |