题目内容

命题甲:“双曲线C的方程为
x2
a2
-
y2
b2
=1
”,命题乙:“双曲线C的渐近线方程为y=±
b
a
x
”,那么甲是乙的(  )
分析:利用双曲线与渐近线方程的关系判断充要条件即可.
解答:解:因为“双曲线C的方程为
x2
a2
-
y2
b2
=1
”,可得“双曲线C的渐近线方程为y=±
b
a
x
”,符合双曲线的基本性质;
而“双曲线C的渐近线方程为y=±
b
a
x
”,则“双曲线C的方程为
x2
a2
-
y2
b2
=m,m≠0”,所以命题甲推出命题乙,命题乙不能说明命题甲,
甲是乙的充分不必要条件.
故选A.
点评:本题考查双曲线的简单性质的应用,充要条件的判断,考查基本知识的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网