题目内容
18.设随机变量x~N(3,1),若P(X>4)=P,则P(2<X<4)=1-2p.分析 根据题目中:“正态分布N(3,1)”,画出其正态密度曲线图:根据对称性,由P(X>4)=p的概率可求出P(2<X<4).
解答
解:∵随机变量X~N(3,1),观察图得,
P(2<X<4)=1-2P(X>4)=1-2p.
故答案为:1-2p.
点评 本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.
练习册系列答案
相关题目
6.设a=lg5,b=log2$\sqrt{2}$,c=ln3,则( )
| A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
13.如图所示的程序框图,输出的结果S的值为( )

| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{1}{2}$+$\frac{\sqrt{3}}{2}$ | D. | $\frac{3}{2}$+$\frac{\sqrt{3}}{2}$ |
3.
如图,已知四边形ABCD是梯形,E,F分别是腰的中点,M,N是线段EF上的两个点,且EM=MN=NF,下底是上底的2倍,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{BC}=\overrightarrow b$,则$\overrightarrow{DN}$=( )
| A. | $-\frac{1}{2}\overrightarrow a-\frac{1}{2}\overrightarrow b$ | B. | $\frac{1}{4}\overrightarrow a+\frac{1}{2}\overrightarrow b$ | C. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b$ | D. | $\frac{1}{4}\overrightarrow a-\frac{1}{2}\overrightarrow b$ |
3.下列命题中错误的是( )
| A. | 命题“?x∈[0,1],使x2-1≥0的否定为“?x∈[0,1],都有x2-1<0” | |
| B. | 命题p为假命题,命题q为真命题,则(¬p)∨(¬q)为真命题 | |
| C. | 命题“若x,y均为奇数,则x+y为奇数”及它的逆命题均为假命题 | |
| D. | 命題“若x2+2x=0,则x=0或x=2”的逆否命题为“若x≠0或x≠2,则x2+2x≠0”. |