题目内容
设函数A.
B.π
C.2π
D.
【答案】分析:依题意可知,f(x1)=-2,f(x2)=2,由|AB|=
,可求得|x2-x1|=2,从而可求得ω的最小值.
解答:解:∵f(x)=2sin(ωx+
)(ω>0)对任意x∈R有f(x1)≤f(x)≤f(x2),
∴f(x1)=-2,f(x2)=2,
又|AB|=
=
=
,
∴|x2-x1|=2≥
,
∴T=
≤4,
∴ω≥
.
∴ω的最小值为
.
故选A.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得|x2-x1|=2是关键,也是难点,属于中档题.
解答:解:∵f(x)=2sin(ωx+
∴f(x1)=-2,f(x2)=2,
又|AB|=
∴|x2-x1|=2≥
∴T=
∴ω≥
∴ω的最小值为
故选A.
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求得|x2-x1|=2是关键,也是难点,属于中档题.
练习册系列答案
相关题目