搜索
题目内容
已知x>0,y>0,z>0.
求证:
≥8.
试题答案
相关练习册答案
证明见解析
证明 ∵x>0,y>0,z>0,
∴
+
≥
>0,
+
≥
>0.
+
≥
>0,
∴
≥
=8.
(当且仅当x=y=z时等号成立)
练习册系列答案
寒假习训浙江教育出版社系列答案
寒假作业美妙假期云南科技出版社系列答案
归类加模拟考试卷新疆文化出版社系列答案
全程达标小升初模拟加真题考试卷新疆美术摄影出版社系列答案
中考方舟真题超详解系列答案
一品教育一品设计河南人民出版社系列答案
快乐假期行寒假用书系列答案
启航文化赢在假期寒假济南出版社系列答案
快乐假期智趣寒假花山文艺出版社系列答案
大联考期末复习合订本系列答案
相关题目
(本小题满分14分)
(1) 证明:当
时,不等式
成立;
(2) 要使上述不等式
成立,能否将条件“
”适当放宽?若能,请放宽条件并简述理由;若不能,也请说明理由;
(3)请你根据⑴、⑵的证明,试写出一个类似的更为一般的结论,且给予证明.
(12分)已知0<a<1,0<b<1,0<c<1。求证:(1-a)b,(1-b)c,(1-c)a中至少有一个不大于
。
已知
x
,
y
均为正数,且
x
>
y
,求证:
.
若a,b∈R,求证:
≤
+
.
若
a
>0,
b
>0,
a
3
+
b
3
=2,求证:
a
+
b
≤2,
ab
≤1。
求证:若三棱锥的顶点到底面的射影是底面三角形的垂心,则底面三角形的任一顶点到所对侧面的射影也必是此三角形的垂心.
用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是( )
A.2k+2
B.2k+3
C.2k+1
D.(2k+2)+(2k+3)
用反证法证明命题“三角形的三个内角中至多有一个是钝角”时, 假设正确的是( )
A.假设三角形的内角三个内角中没有一个是钝角
B.假设三角形的内角三个内角中至少有一个是钝角
C.假设三角形的内角三个内角中至多有两个是钝角
D.假设三角形的内角三个内角中至少有两个是钝角
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案