题目内容
求y=3tan(| π |
| 6 |
| x |
| 4 |
分析:根据正切函数的周期公式直接求出函数的周期,利用正切函数的单调性直接求出y=3tan(
-
)的单调区间.
| π |
| 6 |
| x |
| 4 |
解答:解:y=3tan(
-
)=-3tan(
-
),
∴T=
=4π,
∴y=3tan(
-
)的周期为4π.
由kπ-
<
-
<kπ+
,得4kπ-
<x<4kπ+
(k∈Z),
y=3tan(
-
)在(4kπ-
,4kπ+
)(k∈Z)内单调递增.
∴y=3tan(
-
)在(4kπ-
,4kπ+
)(k∈Z)内单调递减.
| π |
| 6 |
| x |
| 4 |
| x |
| 4 |
| π |
| 6 |
∴T=
| π |
| |ω| |
∴y=3tan(
| π |
| 6 |
| x |
| 4 |
由kπ-
| π |
| 2 |
| x |
| 4 |
| π |
| 6 |
| π |
| 2 |
| 4π |
| 3 |
| 8π |
| 3 |
y=3tan(
| x |
| 4 |
| π |
| 6 |
| 4π |
| 3 |
| 8π |
| 3 |
∴y=3tan(
| π |
| 6 |
| x |
| 4 |
| 4π |
| 3 |
| 8π |
| 3 |
点评:本题是基础题,考查正切函数的周期,单调区间的求法,牢记基本函数的单调性是解好函数单调区间的前提,记熟记牢才能得心应手.
练习册系列答案
相关题目