题目内容

已知cosα+sinα=-
15
,α∈(0,π).求cos2α的值.
分析:首先将所给式子平方求出2cosαsinα=-
24
25
,进而结合α的范围得出cosα-sinα<0,然后求出cosα-sinα=-
7
5
,再利用二倍角的余弦公式求出结果.
解答:解:∵cosα+sinα=-
1
5
?(cosα+sinα)2=
1
25
?1+2cosαsinα=
1
25
?2cosαsinα=-
24
25
…(3分)
又∵α∈(0,π),∴sinα>0,故cosα<0?α∈(
π
2
,π)
?cosα-sinα<0.        …(6分)
又∵(cosα-sinα)2=1-2sinαcosα=
49
25
,从而有?cosα-sinα=-
7
5
,…(9分)
∴cos2α=cos2α-sin2α=(cosα-sinα)(cosα+sinα)=
7
25
…(12分)
点评:本题考查了二倍角的余弦,解题过程中要注意根据角的范围判断角的符号,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网