题目内容
已知函数f(x)=
,则f(1)+f(2)+…+f(2013)+f(2014)+f(
)+f(
)+…+f(
)+f(
)=( )
| x2 |
| x2+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2013 |
| 1 |
| 2014 |
A.2010
| B.2011
| C.2012
| D.2013
|
∵已知函数f(x)=
,
∴f(
)=
=
,
∴f(x)+f(
)=1.
则f(1)+f(2)+…+f(2013)+f(2014)+f(
)+f(
)+…+f(
)+f(
)
=f(1)+[f(2)+f(
)]+[f(3)+f(
)+…+[f(2014)+f(
)]
=
+1+1+…+1=
+2013×1=2013
,
故选:D.
| x2 |
| x2+1 |
∴f(
| 1 |
| x |
| ||
|
| 1 |
| 1+x2 |
∴f(x)+f(
| 1 |
| x |
则f(1)+f(2)+…+f(2013)+f(2014)+f(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2013 |
| 1 |
| 2014 |
=f(1)+[f(2)+f(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2014 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故选:D.
练习册系列答案
相关题目