题目内容
已知cos(a+
)=-
,a∈(0,
),则sina=
.
| π |
| 6 |
| ||
| 3 |
| π |
| 2 |
2
| ||||
| 6 |
2
| ||||
| 6 |
分析:由a∈(0,
)可得α+
∈(
,
),由cos(a+
)可求sin(a+
),而sinα=sin[(α+
)-
],利用两角差的正弦公式展开可求
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
解答:解:由a∈(0,
)可得α+
∈(
,
)
∵cos(a+
)=-
,∴sin(a+
)=
,a∈(
∵sinα=sin[(α+
)-
]=sin(α+
)cos
-sin
cos(α+
)
=
×
-
×(-
)=
故答案为:
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 2π |
| 3 |
∵cos(a+
| π |
| 6 |
| ||
| 3 |
| π |
| 6 |
| 2 |
| 3 |
∵sinα=sin[(α+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| 2 |
| 3 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 3 |
2
| ||||
| 6 |
故答案为:
2
| ||||
| 6 |
点评:本题主要考查了同角平方关系的 应用,应用此公式由正弦(余弦)求余弦(正弦)时一定要注意角的范围,两角差的正弦公式的应用,解题的关键是要发现α=(α+
)-
这一拆角的技巧.
| π |
| 6 |
| π |
| 6 |
练习册系列答案
相关题目
已知cos(x-
)=m,则cosx+cos(x-
)=( )
| π |
| 6 |
| π |
| 3 |
| A、2m | ||
| B、±2m | ||
C、
| ||
D、±
|