题目内容
4.分析 如图所示,建立空间直角坐标系,设P(x,y,0),可得$\overrightarrow{AP}•\overrightarrow{AB}$,可得$|\overrightarrow{PC}|$=$\sqrt{{x}^{2}+(y-\frac{\sqrt{3}}{2})^{2}+0}$.
解答 解:如图所示,建立空间直角坐标系,![]()
A$(0,0,\frac{1}{2})$,B$(0,\frac{\sqrt{3}}{2},0)$,C$(0,\frac{3\sqrt{3}}{2},0)$,设P(x,y,0),则$\overrightarrow{AP}$=$(x,y,-\frac{1}{2})$,$\overrightarrow{AB}$=$(0,\frac{\sqrt{3}}{2},-\frac{1}{2})$,
$\overrightarrow{AP}•\overrightarrow{AB}$=$\sqrt{{x}^{2}+{y}^{2}+(-\frac{1}{2})^{2}}$$•\sqrt{0+(\frac{\sqrt{3}}{2})^{2}+(-\frac{1}{2})^{2}}$$•cos\frac{π}{6}$,
∴$\frac{\sqrt{3}}{2}$y+$\frac{1}{4}$=$\sqrt{{x}^{2}+{y}^{2}+(-\frac{1}{2})^{2}}$$•cos\frac{π}{6}$,
∴$\frac{3}{4}{y}^{2}+\frac{\sqrt{3}}{4}$y+$\frac{1}{16}$=$\frac{3}{4}$$({x}^{2}+{y}^{2}+\frac{1}{4})$,
∴${x}^{2}=\frac{\sqrt{3}}{3}$y-$\frac{1}{6}$.
$|\overrightarrow{PC}|$=$\sqrt{{x}^{2}+(y-\frac{\sqrt{3}}{2})^{2}+0}$=$\sqrt{(y-\frac{\sqrt{3}}{3})^{2}+\frac{5}{4}}$≥$\frac{\sqrt{5}}{2}$,
∴PC的最小值是$\frac{\sqrt{5}}{2}$.
故答案为:$\frac{\sqrt{5}}{2}$.
点评 本题考查了空间位置关系、空间向量的应用、数量积运算性质,考查了推理能力与计算能力,属于中档题.
| A. | {-1,0,1,2} | B. | {0,1,2} | C. | {-1,0,1,2,3} | D. | {0,1,2,3} |
| A. | 146石 | B. | 172石 | C. | 341石 | D. | 1358石 |