题目内容
5.在1,2,3,6这组数据中随机取出三个数,则数字3是这三个不同数字的中位数的概率是( )| A. | $\frac{3}{4}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
分析 先求出基本事件总数,现利用列法求出数字3是这三个不同数字的中位数包含的基本事件个数,由此能求出数字3是这三个不同数字的中位数的概率.
解答 解:在1,2,3,6这组数据中随机取出三个数,
基本事件总数n=${C}_{4}^{3}=4$,
数字3是这三个不同数字的中位数包含的基本事件有:
136,236,有2个基本事件,
∴数字3是这三个不同数字的中位数的概率是p=$\frac{1}{2}$.
故选:C.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.
练习册系列答案
相关题目
15.国家实行二孩生育政策后,为研究家庭经济状况对生二胎的影响,某机构在本地区符合二孩生育政策的家庭中,随机抽样进行了调查,得到如下的列联表:
(1)请完成上面的列联表,并判断能否在犯错误的概率不超过1%的前提下认为家庭经济状况与生育二胎有关?
(2)若采用分层抽样的方法从愿意生二胎的家庭中随机抽取4个家庭,则经济状况好和经济状况一般的家庭分别应抽取多少个?
(3)在(2)的条件下,从中随机抽取2个家庭,求2个家庭都是经济状况好的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| 经济状况好 | 经济状况一般 | 合计 | |
| 愿意生二胎 | 50 | 50 | 100 |
| 不愿意生二胎 | 20 | 90 | 110 |
| 合计 | 70 | 140 | 210 |
(2)若采用分层抽样的方法从愿意生二胎的家庭中随机抽取4个家庭,则经济状况好和经济状况一般的家庭分别应抽取多少个?
(3)在(2)的条件下,从中随机抽取2个家庭,求2个家庭都是经济状况好的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
16.
一个水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,如图所示,则原平面图形的面积为( )
| A. | 4$\sqrt{3}$ | B. | 8 | C. | 8$\sqrt{3}$ | D. | 8$\sqrt{2}$ |
13.设函数的定义域为D,若满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域为$[{\frac{a}{2},\frac{b}{2}}]$,则称f(x)为“倍缩函数”.若函数f(x)=ex+t为“倍缩函数”,则实数t的取值范围是( )
| A. | $({-∞,-\frac{1+ln2}{2}}]$ | B. | $({-∞,-\frac{1+ln2}{2}})$ | C. | $[{\frac{1+ln2}{2},+∞})$ | D. | $({\frac{1+ln2}{2},+∞})$ |
20.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,根据上表提供的数据,求出y关于x的线性回归方程y=0.75x+0.35,那么表中m=3.9.
| X | 3 | 4 | 5 | 6 |
| y | 2.5 | m | 4 | 4.5 |
14.下列函数中,与函数$f(x)=\frac{1}{{\root{3}{x}}}$的定义域相同的函数是( )
| A. | y(x)=x•ex | B. | $y=\frac{sinx}{x}$ | C. | $y=\frac{x}{sinx}$ | D. | $y=\frac{lnx}{x}$ |