题目内容

在直三棱柱ABC-A1B1C1中,AA1=AB=AC=4,∠BAC=90°,D为侧面ABB1A1的中心,E为BC的中点

(1)求证:平面B1DE⊥侧面BCC1B1

(2)求异面直线A1B与B1E所成的角;

(3)求点C1到面B1DE的距离.

答案:
解析:

  解:(1)连接AE,因为AB=AC,E为BC的中点,所以AEBC  1分

  又侧面底面ABC,因此AE侧面  2分

  AE 所以平面侧面  4分

  (2)取AE中点F,连接DF,则DF∥

  所以BDF为异面直线所成的角  6分

  在△BDF中,BD=2

  

  求异面直线所成的角  8分

  (3)过C1作B1E的垂线C1H,易知C1H=  12分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网