题目内容
在直三棱柱ABC-A1B1C1中,AA1=AB=AC=4,∠BAC=90°,D为侧面ABB1A1的中心,E为BC的中点
(1)求证:平面B1DE⊥侧面BCC1B1;
(2)求异面直线A1B与B1E所成的角;
(3)求点C1到面B1DE的距离.
答案:
解析:
解析:
|
解:(1)连接AE,因为AB=AC,E为BC的中点,所以AE 又侧面 AE (2)取AE中点F,连接DF,则DF∥
所以 在△BDF中,BD=2 (3)过C1作B1E的垂线C1H,易知C1H= |
练习册系列答案
相关题目