题目内容

在直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点.
(1)证明:A1B1⊥C1D;
(2)当AM=
3
2
时,求二面角M-DE-A的大小.
分析:(1))以C为坐标原点建立空间直角坐标系C-xyz,利用
A1B1
C1D
=0.证明A1B1⊥C1D
(2)分别求出平面MDE,平面DEA的一个法向量,利用两个法向量夹角求二面角M-DE-A的大小.
解答:(1)证明:以C为坐标原点建立空间直角坐标系C-xyz,则A1(1,0,1),B1(0,1,1),C1(0,0,1),D(
1
2
1
2
,0),
A1B1
=(-1,1,0),
C1D
=(
1
2
1
2
,-1),则
A1B1
C1D
=0.所以
A1B1
C1D
=0.所以A1B1⊥C1D;   …(6分)
(2)解:M(1,0,
3
2
),E(0,
1
2
,0),
ED
=(
1
2
,0,0),
ME
=(-1,
1
2
,-
3
2
)

n
=(x,y,z)为平面MDE的一个法向量.则
n
ED
=0
n
ME
=0
1
2
x=0
-x+
1
2
y-
3
2
z=0
,令y=
3
,则x=0,z=1,所以
n
=(0,
3
,1)
CC1
=(0,0,1)为平面DEA的一个法向量,所以cos<
n
CC1
>=
n
CC1
|n|
|CC1
|
=
1
2

所以二面角M-DE-A的大小为
π
3
点评:本题考查空间直线和直线的位置关系,二面角大小求解.考查逻辑思维、空间想象能力、论证计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网