题目内容
2.扇形AOB的周长为8cm,若这个扇形的面积为3cm2,则圆心角的大小为6或$\frac{2}{3}$.分析 根据题意设出扇形的弧长与半径,通过扇形的周长与面积,即可求出扇形的弧长与半径,进而根据公式α=$\frac{l}{r}$,求出扇形圆心角的弧度数.
解答 解:设扇形的弧长为:l,半径为r,所以2r+l=8,
因为S扇形=$\frac{1}{2}$lr=3,
所以解得:r=1,l=6或者r=3,l=2
所以扇形的圆心角的弧度数是:6或$\frac{2}{3}$.
故答案为:6或$\frac{2}{3}$.
点评 本题主要考查扇形的周长与扇形的面积公式的应用,以及考查学生的计算能力,此题属于基础题型.
练习册系列答案
相关题目
13.f(x)=$\left\{\begin{array}{l}{sin(\frac{π}{2}x+\frac{π}{6}),x≤2015}\\{f(x-4),x>2015}\end{array}\right.$,则f(2014)+f(2015)+f(2016)=( )
| A. | 1+$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | 1-$\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
7.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$不共面,则满足A,B,C,P四点共面的条件是( )
| A. | $\overrightarrow{OP}$=2x$\overrightarrow{AO}$+3y$\overrightarrow{BO}$+4z$\overrightarrow{CO}$,且2x+3y+4z=1 | B. | $\overrightarrow{OP}$+$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$ | ||
| C. | $\overrightarrow{AP}$=$\overrightarrow{AB}$+3$\overrightarrow{AC}$ | D. | $\overrightarrow{AP}$=2$\overrightarrow{OB}$-$\overrightarrow{OC}$ |
14.已知{an}是等差数列,a1=x-2,a2=x,a3=2x+1,则该数列的通项公式是( )
| A. | an=2n+3 | B. | an=2n-3 | C. | an=2n+1 | D. | an=2n-1 |
12.已知点O是△ABC的外心,AB=4,AO=3,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范围是( )
| A. | [-4,24] | B. | [-8,20] | C. | [-8,12] | D. | [-4,20] |