题目内容
平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱,两两夹角都为60°,且AB=2,AD=1,AA1=3,M、N分别为B1B,B1C1的中点,则MN与AC所成角的余弦值为( )![]()
A.
B.
C.
D.![]()
B
解法一:设
=a,
=b,
=c.则:
=a+b.
=
-
=
+
+
-(
+
)
=
+
-
=c+
b-
c=
b+
c.
·
=
(a+b)·(b+c)=
(b2+a·b+b·c+a·c)
=
(1+2×1×cos60°+1×3cos60°+2×3cos60°)
=
.
|
|=
.
|
|=![]()
.
∴cos<
,
>=
.
解法二:连结BC1、AD1则四边形ABC1D1是平行四边形,∴AD1∥BC1,
又![]()
![]()
BC1,∴AD1∥
,
则AD与AC所成的角∠CAD1就是
与AC所成的角.
连结CDA1B,则CD1
A1B.
在△ACD1中,AC2=AB2+BC2-2AB·BCcos(180°-60°)
=22+12-2×2×1×(-
)=7.
AD12=AD2+DD12-2AD·DD1cos(180°-60°)
=12+32-2×1×3×(-
)=13.
CD12=A1B2=AB2+AA12-2AA1·ABcos60°=22+32-2×2×3×
=7.
∴cosCAD1=
.
练习册系列答案
相关题目