题目内容

15.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$b=2\sqrt{5}$,$B=\frac{π}{4}$,$cosC=\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求c的值;
(Ⅱ)求△ABC的面积.

分析 (Ⅰ)在△ABC中,0<C<π,且$cosC=\frac{{2\sqrt{5}}}{5}$,可得sinC=$\sqrt{1-co{s}^{2}C}$.再利用正弦定理可得$\frac{c}{sinC}=\frac{b}{sinB}$,解出即可;
(II)利用余弦定理与三角形的面积计算公式即可得出.

解答 解:(Ⅰ)在△ABC中,0<C<π,且$cosC=\frac{{2\sqrt{5}}}{5}$,
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{5}}{5}$.
∵$\frac{c}{sinC}=\frac{b}{sinB}$,且 $b=2\sqrt{5}$,$B=\frac{π}{4}$,
∴$c=\frac{bsinC}{sinB}=\frac{{2\sqrt{5}×\frac{{\sqrt{5}}}{5}}}{{\frac{{\sqrt{2}}}{2}}}=2\sqrt{2}$.
∴$c=2\sqrt{2}$.  
(Ⅱ)∵b2=a2+c2-2accosB,
∴a2-4a-12=0,
∴a=6或a=-2(舍).
∴${S_{△ABC}}=\frac{1}{2}acsinB=6$.

点评 本题考查了正弦定理、余弦定理、三角形的面积计算公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网