题目内容
在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的两条渐近线与抛物线y2=4x的准线相交于A,B两点.若△AOB的面积为2,则双曲线的离心率为 .
命题“若a2+b2=0,则a=0且b=0”的逆否命题是( )
A.若a2+b2≠0,则a≠0且b≠0 B.若a2+b2≠0,则a≠0或b≠0
C.若a=0且b=0,则a2+b2≠0 D.若a≠0或b≠0,则a2+b2≠0
过椭圆Γ:=1(a>b>0)右焦点F2的直线交椭圆于A,B两点,F1为其左焦点,已知△AF1B的周长为8,椭圆的离心率为.
(1)求椭圆Γ的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆Γ恒有两个交点P,Q,且?若存在,求出该圆的方程;若不存在,请说明理由.
已知数列{an}的前n项和Sn=n2(n∈N*),等比数列{bn}满足b1=a1,2b3=b4.
(1)求数列{an}和{bn}的通项公式;
(2)若cn=an·bn(n∈N*),求数列{cn}的前n项和Tn.
某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1000名学生的成绩,并根据这1000名学生的成绩画出样本的频率分布直方图(如图),则成绩在[300,350)内的学生人数共有 .
在△ABC中,点D在边BC上,且DC=2BD,AB∶AD∶AC=3∶k∶1,则实数k的取值范围为 .
已知数列{an}的各项都为正数,且对任意n∈N*,a2n-1,a2n,a2n+1成等差数列,
a2n,a2n+1,a2n+2成等比数列.
(1)若a2=1,a5=3,求a1的值;
(2)设a1<a2,求证:对任意n∈N*,且n≥2,都有
集合A=,集合B={a2,a+b,0},若A=B,求a2 013+b2 014的值.
下列四个结论正确的是________.(填序号)
① “x≠0”是“x+|x|>0”的必要不充分条件;
② 已知a、b∈R,则“|a+b|=|a|+|b|”的充要条件是ab>0;
③ “a>0,且Δ=b2-4ac≤0”是“一元二次不等式ax2+bx+c≥0的解集是R”的充要条件;
④ “x≠1”是“x2≠1”的充分不必要条件.