题目内容

已知函数,求导函数f'(x),并确定f(x)的单调区间.
【答案】分析:根据函数的求导法则进行求导,然后由导数大于0时原函数单调递增,导数小于0时原函数单调递减可得答案.
解答:解:==
令f'(x)=0,得x=b-1.
当b-1<1,即b<2时,f'(x)的变化情况如下表:

当b-1>1,即b>2时,f'(x)的变化情况如下表:

所以,当b<2时,函数f(x)在(-∞,b-1)上单调递减,在(b-1,1)上单调递增,
在(1,+∞)上单调递减.
当b>2时,函数f(x)在(-∞,1)上单调递减,在(1,b-1)上单调递增,在(b-1,+∞)上单调递减.
当b-1=1,即b=2时,,所以函数f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递减.
点评:本题主要考查函数的求导方法和导数的应用.导数题一般不会太难但公式记忆容易出错,要熟练掌握简单函数的求导法则.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网