题目内容
如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于点O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.
已知复数z=+(m2-5m-6)i(m∈R),试求实数m分别取什么值时,z分别为:
(1) 实数;
(2) 虚数;
(3) 纯虚数.
已知向量a=(1,2),b=(2,0),若向量λa+b与向量c=(1,-2)共线,则实数λ=________.
一个与球心距离为1的平面截球体所得的圆面面积为π,则球的体积为( )
A. B.
C. D.8π
如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥A-BCD中,下列命题正确的是( )
A.平面ABD⊥平面ABC B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC D.平面ADC⊥平面ABC
如图,三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1的中点,F是AB的中点,AC=BC=1,AA1=2.
(1)求证:CF∥平面AB1E;
(2)求三棱锥C-AB1E在底面AB1E上的高.
某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数甲、乙和中位数y甲、y乙进行比较,下面结论正确的是( )
设复数z满足z·(1-i)=3-i,i为虚数单位,则z=( )
A.1+2i B.1-2i
C.2+i D.2-i
已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点分别是F1、F2,过点F1的直线l交椭圆C于E、G两点,且△EGF2的周长为4.
(1)求椭圆C的方程;
(2)若过点M(2,0)的直线与椭圆C相交于两点A、B,设P为椭圆上一点,且满足 (O为坐标原点),当<时,求实数t的取值范围.