ÌâÄ¿ÄÚÈÝ
| x2 |
| a2 |
| y2 |
| b2 |
£¨1£©ÒÑÖªÅ×ÎïÏßx2=4
| 3 |
¢ÙÇóÍÖÔ²CµÄ·½³Ì£»
¢ÚÈôÖ±ÏßL½»yÖáÓÚµãM£¬ÇÒ
| MA |
| AF |
| MB |
| BF |
£¨2£©Á¬½ÓAE£¬BD£¬ÊÔ̽Ë÷µ±m±ä»¯Ê±£¬Ö±ÏßAE¡¢BDÊÇ·ñÏཻÓÚÒ»¶¨µãN£¿Èô½»ÓÚ¶¨µãN£¬ÇëÇó³öNµãµÄ×ø±ê²¢¸øÓèÖ¤Ã÷£»·ñÔò˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÌâÉèÌõ¼þÖªc=1£¬a2=b2+c2=4£¬ÍÖÔ²CµÄ·½³ÌΪ
+
=1£¬ÔÙÓÉlÓëyÖá½»ÓÚM(0£¬-
)£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ
£¬Öª£¨3m2+4£©y2+6my-9=0£¬¡÷=144£¨m2+1£©£¾0£¬È»ºóÓɸùÓëϵÊýµÄ¹ØÏµÄÜÇó³ö¦Ë1+¦Ë2µÄÖµ£»
£¨2£©ÓÉF£¨1£¬0£©£¬k=£¨a2£¬0£©£¬ÏÈ̽Ë÷m=0ʱ£¬Ö±ÏßL¡ÍoxÖᣬÔòABEDÓɶԳÆÐÔÖª£¬AEÓëBDÏཻFKÖеãN£¬ÇÒN(
£¬0)£¬ÔÙ²ÂÏ룺µ±m±ä»¯Ê±£¬AEÓëBDÏཻÓÚ¶¨µãN(
£¬0)£®È»ºó½áºÏÌâÉèÌõ²ÂÏë½øÐÐÖ¤Ã÷£®
| x2 |
| 4 |
| y2 |
| 3 |
| 1 |
| m |
|
£¨2£©ÓÉF£¨1£¬0£©£¬k=£¨a2£¬0£©£¬ÏÈ̽Ë÷m=0ʱ£¬Ö±ÏßL¡ÍoxÖᣬÔòABEDÓɶԳÆÐÔÖª£¬AEÓëBDÏཻFKÖеãN£¬ÇÒN(
| a2+1 |
| 2 |
| a2+1 |
| 2 |
½â´ð£º½â£º£¨1£©Ò×Öªb=
£¬¡àb2=3£¬ÓÖF£¨1£¬0£©£¬¡àc=1£¬a2=b2+c2=4
¡àÍÖÔ²CµÄ·½³ÌΪ
+
=1£¨3·Ö£©
¡ßlÓëyÖá½»ÓÚM(0£¬-
)
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ
¡à£¨3m2+4£©y2+6my-9=0£¬¡÷=144£¨m2+1£©£¾0¡à
+
=
(*)£¨5·Ö£©
ÓÖÓÉ
=¦Ë1
£¬¡à(x1£¬y1+
)=¦Ë1(1-x1£¬-y1)
¡à¦Ë1=-1-
ͬÀí¦Ë2=-1-
¡à¦Ë1+¦Ë2=-2-
(
+
)=-2-
=-
£¨8·Ö£©
£¨3£©¡ßF£¨1£¬0£©£¬k=£¨a2£¬0£©£¬
ÏÈ̽Ë÷£¬µ±m=0ʱ£¬Ö±ÏßL¡ÍoxÖᣬÔòABEDÓɶԳÆÐÔÖª£¬AEÓëBDÏཻFKÖеãN£¬ÇÒN(
£¬0)
²ÂÏ룺µ±m±ä»¯Ê±£¬AEÓëBDÏཻÓÚ¶¨µãN(
£¬0)£¨9·Ö£©
Ö¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬E£¨a2£¬y2£©£¬D£¨a2£¬y1£©
µ±m±ä»¯Ê±Ê×ÏÈAE¹ý¶¨µãN
¡ß
£¬¼´£¨a2+b2m2£©y2+2mb2y+b2£¨1-a2£©=0
ÓÖ¡÷=4a2b2£¨a2+m2b2-1£©£¾0£¨a£¾1£©
ÓÖKAN=
£¬KEN=
¶øKAN-KEN=
(
(y1+y2)-my1y2=
•(-
)-m•
=
=0)
¡àKAN=KEN£¬¡àA¡¢N¡¢EÈýµã¹²Ïߣ¬
ͬÀí¿ÉµÃB¡¢N¡¢DÈýµã¹²Ïß
¡àAEÓëBDÏཻÓÚ¶¨µãN(
£¬0)£¨13·Ö£©
| 3 |
¡àÍÖÔ²CµÄ·½³ÌΪ
| x2 |
| 4 |
| y2 |
| 3 |
¡ßlÓëyÖá½»ÓÚM(0£¬-
| 1 |
| m |
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ
|
¡à£¨3m2+4£©y2+6my-9=0£¬¡÷=144£¨m2+1£©£¾0¡à
| 1 |
| y1 |
| 1 |
| y2 |
| 2m |
| 3 |
ÓÖÓÉ
| MA |
| AF |
| 1 |
| m |
¡à¦Ë1=-1-
| 1 |
| my1 |
| 1 |
| my2 |
¡à¦Ë1+¦Ë2=-2-
| 1 |
| m |
| 1 |
| y1 |
| 1 |
| y2 |
| 2 |
| 3 |
| 8 |
| 3 |
£¨3£©¡ßF£¨1£¬0£©£¬k=£¨a2£¬0£©£¬
ÏÈ̽Ë÷£¬µ±m=0ʱ£¬Ö±ÏßL¡ÍoxÖᣬÔòABEDÓɶԳÆÐÔÖª£¬AEÓëBDÏཻFKÖеãN£¬ÇÒN(
| a2+1 |
| 2 |
²ÂÏ룺µ±m±ä»¯Ê±£¬AEÓëBDÏཻÓÚ¶¨µãN(
| a2+1 |
| 2 |
Ö¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬E£¨a2£¬y2£©£¬D£¨a2£¬y1£©
µ±m±ä»¯Ê±Ê×ÏÈAE¹ý¶¨µãN
¡ß
|
ÓÖ¡÷=4a2b2£¨a2+m2b2-1£©£¾0£¨a£¾1£©
ÓÖKAN=
| -y1 | ||
|
| -y2 | ||
|
¶øKAN-KEN=
| ||||
|
(
| a2-1 |
| 2 |
| a2-1 |
| 2 |
| 2mb2 |
| a2+m2b2 |
| b2(1-a2) |
| a2+m2b2 |
| (a2-1)•(mb2-mb2) |
| a2+m2b2 |
¡àKAN=KEN£¬¡àA¡¢N¡¢EÈýµã¹²Ïߣ¬
ͬÀí¿ÉµÃB¡¢N¡¢DÈýµã¹²Ïß
¡àAEÓëBDÏཻÓÚ¶¨µãN(
| a2+1 |
| 2 |
µãÆÀ£º±¾Ì⿼²éÔ²×¶ÇúÏߺÍÖ±ÏßµÄλÖùØÏµºÍ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâºÏÀíµØ½øÐвÂÏ룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿