题目内容
已知椭圆
的左、右焦点分别为
,
.过
的直线交椭圆于
两点,过
的直线交椭圆于
两点,且
,垂足为
.
(Ⅰ)设
点的坐标为
,证明:
;
(Ⅱ)求四边形
的面积的最小值.
(Ⅰ)设
(Ⅱ)求四边形
(Ⅰ)同解析;(Ⅱ)四边形
的面积的最小值为
;
(Ⅰ)椭圆的半焦距
,
由
知点
在以线段
为直径的圆上,故
,
所以,
.
(Ⅱ)(ⅰ)当
的斜率
存在且
时,
的方程为
,代入椭圆方程
,并化简得
.
设
,
,则
,
;
因为
与
相交于点
,且
的斜率为
,
所以,
.
四边形
的面积
.
当
时,上式取等号.
(ⅱ)当
的斜率
或斜率不存在时,四边形
的面积
.
综上,四边形
的面积的最小值为
.
由
所以,
(Ⅱ)(ⅰ)当
设
因为
所以,
四边形
当
(ⅱ)当
综上,四边形
练习册系列答案
相关题目