题目内容
已知tan(x-
)=
(
<x<
).
(Ⅰ)求cosx的值;
(Ⅱ)求
的值.
| π |
| 4 |
| 3 |
| 4 |
| π |
| 4 |
| π |
| 2 |
(Ⅰ)求cosx的值;
(Ⅱ)求
| sin2x-2sin2x |
| cos2x |
(Ⅰ)因为tan(x-
)=
,所以
=
,则tanx=7.(4分)
又
<x<
,所以cosx=
.(6分)
(Ⅱ)方法1:
由(Ⅰ)得cosx=
,又
<x<
,
所以sinx=
,sin2x=2sinxcosx=
.(8分)
又
<x<
,所以
<2x<π,cos2x=-
.(10分)
则
=
=
=
.(13分)
方法2:
=
(10分)
=
=
=
.(13分)
| π |
| 4 |
| 3 |
| 4 |
| tanx-1 |
| 1+tanx |
| 3 |
| 4 |
又
| π |
| 4 |
| π |
| 2 |
| ||
| 10 |
(Ⅱ)方法1:
由(Ⅰ)得cosx=
| ||
| 10 |
| π |
| 4 |
| π |
| 2 |
所以sinx=
7
| ||
| 10 |
| 7 |
| 25 |
又
| π |
| 4 |
| π |
| 2 |
| π |
| 2 |
| 24 |
| 25 |
则
| sin2x-2sin2x |
| cos2x |
| sin2x-(1-cos2x) |
| cos2x |
| sin2x+cos2x-1 |
| cos2x |
| 7 |
| 4 |
方法2:
| sin2x-2sin2x |
| cos2x |
| 2sinx(cosx-sinx) |
| (cosx-sinx)(cosx+sinx) |
=
| 2sinx |
| cosx+sinx |
| 2tanx |
| 1+tanx |
| 7 |
| 4 |
练习册系列答案
相关题目