题目内容
已知tan(x+| π |
| 4 |
| tanx |
| tan2x |
分析:先利用两角和的正切公式求得tanx的值,从而求得tan2x,即可求得
.
| tanx |
| tan2x |
解答:解:∵tan(x+
)=2,
∴
=2,
解得tanx=
;
∴tan2x=
=
=
∴
=
=
故答案为
| π |
| 4 |
∴
| tanx+1 |
| 1-tanx |
解得tanx=
| 1 |
| 3 |
∴tan2x=
| 2tanx |
| 1-tan2x |
| ||
1-
|
| 3 |
| 4 |
∴
| tanx |
| tan2x |
| ||
|
| 4 |
| 9 |
故答案为
| 4 |
| 9 |
点评:本题考查了二倍角的正切与两角和的正切公式,体现了方程思想,是个基础题.
练习册系列答案
相关题目