题目内容
集合M由满足以下条件的函数f(x)组成:对任意x1,x2∈[-1,1]时,都有|f(x1)-f(x2)|≤4|x1-x2|.对于两个函数f1(x)=x2-2x+5, f2(x)=
,以下关系成立的是( ).
| |x| |
| A、f1(x)∈M,f2(x)∈M |
| B、f1(x)∉M,f2(x)∉M |
| C、f1(x)∉M,f2(x)∈M |
| D、f1(x)∈M,f2(x)∉M |
分析:首先分析题目已知集合M由f(x)组成,f(x)满足对任意x1,x2∈[-1,1]时,都有|f(x1)-f(x2)|≤4|x1-x2|.
故下需证明函数f1(x)=x2-2x+5, f2(x)=
,是否满足对任意x1,x2∈[-1,1]时,都有|f(x1)-f(x2)|≤4|x1-x2|.对于f1(x)=x2-2x+5可直接代入化简即可得到答案,对于f2(x)=
考虑到取特殊值的方法,可以验证不成立.
故下需证明函数f1(x)=x2-2x+5, f2(x)=
| |x| |
| |x| |
解答:解:对于f1(x)=x2-2x+5对任意x1,x2∈[-1,1]
|f1(x1)-f1(x2)|=|x12-2x1-5-x22+2x2+5|=|(x1-x2)(x1+x2-2)|=|x1-x2||x1+x2-2|≤4|x1-x2|
故f1(x)∈M.
对于f2(x)=
,对任意x1,x2∈[-1,1]
|f1(x1)-f1(x2) |=|
-
|
当x1=
,x2=0
则此时|f1(x1)-f1(x2) |=
≤ 4•
=
,矛盾,
故f2(x)∉M.
故选D.
|f1(x1)-f1(x2)|=|x12-2x1-5-x22+2x2+5|=|(x1-x2)(x1+x2-2)|=|x1-x2||x1+x2-2|≤4|x1-x2|
故f1(x)∈M.
对于f2(x)=
| |x| |
|f1(x1)-f1(x2) |=|
| |x1| |
| |x2| |
当x1=
| 1 |
| 64 |
则此时|f1(x1)-f1(x2) |=
| 1 |
| 8 |
| 1 |
| 64 |
| 1 |
| 16 |
故f2(x)∉M.
故选D.
点评:此题属于新概念的问题,题中考查了绝对值不等式的应用.对于此类型的题目需要对题目概念做认真分析再做题.属于中档题目.
练习册系列答案
相关题目