题目内容
18.定义在R上的奇函数f(x)满足f(-1)=0,且当x>0时,f(x)>xf′(x),则下列关系式中成立的是( )| A. | 4f($\frac{1}{2}$)>f(2) | B. | 4f($\frac{1}{2}$)<f(2) | C. | f($\frac{1}{2}$)>4f(2) | D. | f($\frac{1}{2}$)f(2)>0 |
分析 先根据f(x)>xf′(x),判断函数$\frac{f(x)}{x}$的单调性,可得到答案.
解答 解:当x>0时,f(x)>xf′(x),[$\frac{f(x)}{x}$]′=$\frac{xf′(x)-f(x)}{{x}^{2}}$<0,
即x>0时$\frac{f(x)}{x}$是减函数,
所以$\frac{f(\frac{1}{2})}{\frac{1}{2}}<\frac{f(2)}{2}$,即:4f($\frac{1}{2}$)<f(2).
故选:B.
点评 本题主要考查了函数单调性与导数的关系,考查构造法的应用.在判断函数的单调性时,常可利用导函数来判断.
练习册系列答案
相关题目
8.已知直线l:$\sqrt{3}$x-y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线,两条垂线分别与y轴交于C,D两点,则|CD|=( )
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 4$\sqrt{3}$ |
6.已知tanθ=2,则$\frac{cosθ+sinθ}{cosθ-sinθ}$=( )
| A. | 3 | B. | -3 | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
7.△ABC外接圆的半径为1,圆心为O,且2$\overrightarrow{OC}$+$\overrightarrow{CB}$+$\overrightarrow{CA}$=0,|$\overrightarrow{OC}$|=|$\overrightarrow{CB}$|,则$\overrightarrow{AC}$•$\overrightarrow{AB}$等于( )
| A. | $\frac{3}{2}$ | B. | $\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |
15.某公司对新研发的一种产品进行试销,得到如下数据及散点图:

其中z=2lny,$\overline{x}$=35,$\overline{y}$=455,$\overline{z}$=11.55,$\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$=1750,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})$=-34580,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({z}_{i}-\overline{z})$=-175.5,$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$=776840,$\sum_{i=1}^{6}({y}_{i}-\overline{y})•({z}_{i}-\overline{z})$=3465.2
(1)根据散点图判断y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)
(2)根据Ⅰ的判断结果及数据,建立y关于x的回归方程(运算过程及回归方程中的系数均保留两位有效数字)
(3)定价为150元/kg时,天销售额的预报值为多少元?
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线$\widehat{y}$=$\widehat{b}$•x$+\widehat{a}$的斜率和截距的最小二乘法估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$•\overline{x}$.
| 定价x(元/kg) | 10 | 20 | 30 | 40 | 50 | 60 |
| 天销售量y(kg) | 1150 | 643 | 424 | 262 | 165 | 86 |
| z=2lny | 14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
其中z=2lny,$\overline{x}$=35,$\overline{y}$=455,$\overline{z}$=11.55,$\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$=1750,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})$=-34580,$\sum_{i=1}^{6}({x}_{i}-\overline{x})•({z}_{i}-\overline{z})$=-175.5,$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$=776840,$\sum_{i=1}^{6}({y}_{i}-\overline{y})•({z}_{i}-\overline{z})$=3465.2
(1)根据散点图判断y与x,z与x哪一对具有较强的线性相关性(给出判断即可,不必说明理由)
(2)根据Ⅰ的判断结果及数据,建立y关于x的回归方程(运算过程及回归方程中的系数均保留两位有效数字)
(3)定价为150元/kg时,天销售额的预报值为多少元?
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线$\widehat{y}$=$\widehat{b}$•x$+\widehat{a}$的斜率和截距的最小二乘法估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}•{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$$-\widehat{b}$$•\overline{x}$.