题目内容

方程|x|+|y|=1所表示的图形的面积为
 
分析:利用绝对值的意义,通过分段讨论,将绝对值符号去掉,将方程转化为几个不等式组,画出不等式组表示的平面区域,判断出区域的形状,求出面积.
解答:解:方程|x|+|y|=1等价于
x≥0
y≥0
x+y=1
x≤0
y≤0
x+y=-1
x≥0
y≤0
x-y=1
x≤0
y≥0
x-y=-1

画出可行域
精英家教网
方程|x|+|y|=1所表示的图形是一个正方形,其边长为
2

故区域的面积为2
故答案为:2
点评:本题考查绝对值的意义:常利用它去绝对值符号、考查画不等式组表示的平面区域:直线定边界,特殊点定区域.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网