ÌâÄ¿ÄÚÈÝ
18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔOΪԵ㣬ÒÔxÖáÕý°ëÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2-4¦Ñsin¦È+3=0£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=3+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£®£¨1£©Ð´³öÇúÏßCºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôµãA£¬BÊÇÇúÏßCÉϵÄÁ½¶¯µã£¬µãPÊÇÖ±ÏßlÉÏÒ»¶¯µã£¬Çó¡ÏAPBµÄ×î´óÖµ£®
·ÖÎö £¨1£©½«¦Ñ2=x2+y2£¬¦Ñsin¦È=y´úÈë¼«×ø±ê·½³ÌµÃ³öÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£¬½«Ö±ÏßlµÄ²ÎÊý·½³ÌÁ½Ê½Ïà¼ÓÏûÈ¥²ÎÊýt£¬µÃµ½Ö±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©¼ÆËãÔ²ÐÄCµ½Ö±ÏßlµÄ¾àÀë¿ÉÖªÖ±ÏßÓëÔ²CÏàÀ룬¹ýP×öÔ²CµÄÇÐÏߣ¬Ôòµ±OP×îС£¬A£¬BΪÇеãʱ£¬¡ÏAPB×î´ó£®
½â´ð ½â£º£¨1£©¡ß¦Ñ2-4¦Ñsin¦È+3=0£¬¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2-4y+3=0£¬¼´x2+£¨y-2£©2=1£®
¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=3+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¬¡àx-1+y-3=0£¬¼´x+y-4=0£®
£¨2£©ÇúÏßCµÄÔ²ÐÄC£¨0£¬2£©µ½Ö±ÏßlµÄ¾àÀëd=$\frac{|2-4|}{\sqrt{2}}=\sqrt{2}$£¾1£®
¡àÖ±ÏßlÓëÔ²CÏàÀ룮
¹ýµãP×÷Ô²CµÄÇÐÏߣ¬Ôòµ±A£¬BΪÇеãʱ£¬¡ÏAPB×î´ó£®
Á¬½áOP£¬OA£¬Ôò¡ÏOPA=$\frac{1}{2}$¡ÏAPB£¬sin¡ÏOPA=$\frac{OA}{OP}$=$\frac{1}{OP}$£®
¡àµ±OPÈ¡µÃ×îСֵ$\sqrt{2}$ʱ£¬sin¡ÏOPAÈ¡µÃ×î´óÖµ$\frac{\sqrt{2}}{2}$£¬¼´¡ÏOPAµÄ×î´óֵΪ$\frac{¦Ð}{4}$£¬
¡à¡ÏAPBµÄ×î´óֵΪ2¡ÏOPA=$\frac{¦Ð}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì£¬²ÎÊý·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥Ïàת»¯£¬Ö±ÏßÓëÔ²µÄλÖùØÏµ£¬ÊôÓÚÖеµÌ⣮
| A£® | 2 | B£® | 3 | C£® | 9 | D£® | 32 |
| ÈÕÏúÊÛÁ¿£¨Ì¨£© | 100 | 150 | 200 |
| ƵÊý | 10 | 25 | 15 |
| ƵÂÊ | 0.2 | 0.5 | 0.3 |
| ÈÕÏúÊÛÁ¿£¨Ì¨£© | 100 | 150 | 200 |
| ƵÊý | 15 | 15 | 20 |
| ƵÂÊ | 0.3 | 0.3 | 0.4 |
ÈôÒÔÉϱíÖÐÆµÂÊ×÷Ϊ¸ÅÂÊ£¬ÇÒÿÌìµÄÏúÊÛÁ¿Ï໥¶ÀÁ¢£®
£¨1£©ÕâÁ½¸öƽ̨£¬ÄÄÒ»¸öƽ̨¸Ã²úÆ·µÄÏúÊÛÁ¿¸üÎȶ¨Ð©£»
£¨2£©ÒÔAÍøÎªÑо¿¶ÔÏó£¬ÒÑ֪ÿ̨¸ÃµçÆ÷µÄÏúÊÛÀûÈóΪ0.2£¨Ç§Ôª£©£¬Óæαíʾ¸ÃÖÖµçÆ÷2ÌìÏúÊÛÀûÈóµÄºÍ£¨µ¥Î»£ºÇ§Ôª£©£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
| A£® | [-$\sqrt{3}$£¬+¡Þ£© | B£® | £¨-¡Þ£¬$\sqrt{3}$] | C£® | [-$\sqrt{3}$£¬3£© | D£® | [-$\sqrt{3}$£¬+$\sqrt{3}$] |