题目内容
已知α为锐角,且tanα=
-1,函数f(x)=2xtan2a+sin(2a+
),数列{an}的首项a1=1,an+1=f(an).
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)求数列{nan}的前n项和Sn.
| 2 |
| π |
| 4 |
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)求数列{nan}的前n项和Sn.
(Ⅰ)∵tanα=
-1,
∴tan2α=
=
=1,又α为锐角,
∴2α=
,
∴sin(2α+
)=1,
∴f(x)=2x+1;
(Ⅱ)∵an+1=f(an)=2an+1,
∴an+1+1=2(an+1),
∵a1=1,
∴数列{an+1}是以2为首项,2为公比的等比数列,
∴an+1=2•2n-1=2n,
∴an=2n-1,
∴nan=n•2n-n,
下面先求{n•2n}的前n项和Tn:
Tn=1×2+2×22+3×23+…+(n-1)•2n-1+n•2n,
2Tn=1×22+2×23+…+(n-1)•2n+n•2n+1,
两式相减得:-Tn=2+22+23+…+2n-n•2n+1
=
-n•2n+1
=2n+1-2-n•2n+1,
∴Tn=2+(n-1)•2n+1,
∴Sn=2+(n-1)•2n+1-
.
| 2 |
∴tan2α=
| 2tanα |
| 1-tan2α |
2(
| ||
1-(
|
∴2α=
| π |
| 4 |
∴sin(2α+
| π |
| 4 |
∴f(x)=2x+1;
(Ⅱ)∵an+1=f(an)=2an+1,
∴an+1+1=2(an+1),
∵a1=1,
∴数列{an+1}是以2为首项,2为公比的等比数列,
∴an+1=2•2n-1=2n,
∴an=2n-1,
∴nan=n•2n-n,
下面先求{n•2n}的前n项和Tn:
Tn=1×2+2×22+3×23+…+(n-1)•2n-1+n•2n,
2Tn=1×22+2×23+…+(n-1)•2n+n•2n+1,
两式相减得:-Tn=2+22+23+…+2n-n•2n+1
=
| 2-2n+1 |
| 1-2 |
=2n+1-2-n•2n+1,
∴Tn=2+(n-1)•2n+1,
∴Sn=2+(n-1)•2n+1-
| (1+n)n |
| 2 |
练习册系列答案
相关题目