题目内容
已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Sn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 2 |
| n•(an+2) |
(Ⅰ)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得
(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,
当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.
∴d=2,
∴an=a1+(n-1)d=2+2(n-1)=2n.
即数列{an}的通项公式an=2n;
(Ⅱ)由an=2n,得
bn=
=
=
=
-
,
∴Sn=b1+b2+b3+…+bn
=1-
+
-
+
-
+…+
-
=
.
(2+2d)2-(2+d)(3+3d),解得d=2,或d=-1,
当d=-1时,a3=0,与a2,a3,a4+1成等比数列矛盾,舍去.
∴d=2,
∴an=a1+(n-1)d=2+2(n-1)=2n.
即数列{an}的通项公式an=2n;
(Ⅱ)由an=2n,得
bn=
| 2 |
| n•(an+2) |
| 2 |
| n(2n+2) |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=b1+b2+b3+…+bn
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| n |
| n+1 |
练习册系列答案
相关题目