题目内容
12.2017年某地区高考改革方案出台,选考科目有:思想政治,历史,地理,物理,化学,生命科学,要求考生从中自选三门参加高考,甲,乙两名学生各自选考3门课程(每门课程被选中的机会相等),两位同学约定共同选择思想政治,不选物理,则他们选考的3门课程都相同的概率是$\frac{1}{6}$.分析 由已知先求出基本事件总数,再求出他们选考的3门课程都相同包含的基本事件个数,由此能求出他们选考的3门课程都相同的概率.
解答 解:由已知得基本事件总数n=${C}_{4}^{2}×{C}_{4}^{2}$=36,
他们选考的3门课程都相同包含的基本事件个数m=${C}_{4}^{2}=6$,
∴他们选考的3门课程都相同的概率是p=$\frac{m}{n}=\frac{6}{36}$=$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.
练习册系列答案
相关题目
2.某次知识竞赛中,四个参赛小队的初始积分都是100分,在答题过程中,各小组每答对1题都可以使自己小队的积分增加5分,若答题过程中四个小队答对的题数分别是4道,7道,7道,2道,则四个小组积分的方差为( )
| A. | 50 | B. | 75.5 | C. | 112.5 | D. | 225 |
3.已知双曲线C为:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),其左右顶点分别为A、B,曲线上一点P,kPA、kPB分别为直线PA、PB的斜率,且kPA•kPB=3,过左焦点的直线l与双曲线交于两点M,N,|MN|的最小值为4,则双曲线的方程为( )
| A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 | B. | $\frac{9{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1 | ||
| C. | $\frac{9{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1和$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1或$\frac{9{x}^{2}}{4}$-$\frac{3{y}^{2}}{4}$=1 |
4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{5π}{6}$)的值为( )

| A. | $-\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |