题目内容

12.2017年某地区高考改革方案出台,选考科目有:思想政治,历史,地理,物理,化学,生命科学,要求考生从中自选三门参加高考,甲,乙两名学生各自选考3门课程(每门课程被选中的机会相等),两位同学约定共同选择思想政治,不选物理,则他们选考的3门课程都相同的概率是$\frac{1}{6}$.

分析 由已知先求出基本事件总数,再求出他们选考的3门课程都相同包含的基本事件个数,由此能求出他们选考的3门课程都相同的概率.

解答 解:由已知得基本事件总数n=${C}_{4}^{2}×{C}_{4}^{2}$=36,
他们选考的3门课程都相同包含的基本事件个数m=${C}_{4}^{2}=6$,
∴他们选考的3门课程都相同的概率是p=$\frac{m}{n}=\frac{6}{36}$=$\frac{1}{6}$.
故答案为:$\frac{1}{6}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网