题目内容
13.已知双曲线M:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F(c,0),直线x=a与抛物线y2=$\frac{4}{3}$cx交于A,B两点,且△ABF为直角三角形,则双曲线M的离心率为3.分析 联立直线和抛物线方程求出A,B的纵坐标,结合三角形是直角三角形进行求解即可.
解答 解:将x=a代入y2=$\frac{4}{3}$cx得y2=$\frac{4}{3}$ac,即y=±$\frac{2\sqrt{3ac}}{3}$,
∵△ABF为直角三角形,∴AF=BF,且AF⊥BF,则c-a=$\frac{1}{2}$|AB|=$\frac{2\sqrt{3ac}}{3}$,
即c2-$\frac{10}{3}$ac+a2=0,得c=3a或c=$\frac{1}{3}$a,
即离心率e=$\frac{c}{a}$=3或$\frac{1}{3}$(舍),
故答案为:3.
点评 本题主要考查双曲线离心率的计算,根据直线和抛物线方程的关系求出交点的纵坐标是解决本题的关键.
练习册系列答案
相关题目
8.已知抛物线C:y2=2px(p>0)的焦点F到双曲线$\frac{x^2}{3}$-y2=1的渐近线的距离为l,过焦点F且斜率为k的直线与抛物线C交于A,B两点,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,则|k|=( )
| A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $2\sqrt{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{1}{3}$ |
5.下列命题是真命题是( )
| A. | ?x∈R,使得|x|≤0成立 | B. | ¬p为真,则p∨q一定是假 | ||
| C. | x-y=0成立的充要条件是$\frac{x}{y}$=1 | D. | ?x∈R,都有ex>xe |
3.点F为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a,b>0)的焦点,过点F的直线与双曲线的一条渐近线垂直且交于点A,与另一条渐近线交于点B.若3$\overrightarrow{AF}$+$\overrightarrow{BF}$=0,则双曲线C的离心率是( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{6}$ |