题目内容
(理)设数列{an}的前n项和为Sn,满足(4-p)Sn+3pan=2p+4,其中p为常数,且p<-2,n∈N*.(1)求证:数列{an}是等比数列,并求出数列{an}的通项公式;
(2)若数列{an}的公比q=f(p),数列{bn}满足b1=a1,bn=
f(bn-1)(n≥2),求数列{bn}的通项公式;
(3)在(2)的条件下,若
(bnlgan)=lg(
p),求实数p的值.
(文)设数列{an}的前n项和为Sn,满足(4-p)Sn+3pan=2p+4,其中p为常数,且p<-2,n∈N*.
(1)求a1并证明数列{an}是等比数列;
(2)若p=-4,求a4的值;
(3)若数列{an}的公比q=f(p),数列{bn}满足b1=a1,bn=
f(bn-1)(n≥2),求数列{bn}的通项公式.
答案:(理)(1)证明:当n=1时,由(4-p)a1+3pa1=2p+4,得(2p+4)a1=2p+4.∵p<-2,2p+4≠0,∴a1=1.
又由(4-p)Sn+3pan=2p+4,(4-p)Sn-1+3pan-1=2p+4(n≥2).
两式相减得(4-p)an+3p(an-an-1)=0,(4+2p)an=3pan-1.故
(n≥2).
∴数列{an}是以1为首项、
为公比的等比数列.
∴an=
.
(2)解:f(p)=
,b1=a1=1.∵bn=
f(bn-1)=
(n≥2),
∴
,即
(n≥2).
故数列{
}是以
=1为首项、
为公差的等差数列.
∴
=1+
(n-1)=
.∴bn=
(n≥1).
(3)解:由
(bnlgan)=lg(
),
又bnlgan=
lg(
)n-1=
,
∴
(bnlgan)=2lg(
)=lg(
).∴(
)2=
.
化简为p2+5p+4=0,解得p=-1与p=-4.由题意知p<-2,故舍去-1,得p=-4.
(文)解:(1)当n=1时,由(4-p)a1+3pa1=2p+4,得(2p+4)a1=2p+4.
∵p<-2,2p+4≠0,∴a1=1.
又由(4-p)Sn+3pan=2p+4,(4-p)Sn-1+3pan-1=2p+4(n≥2),两式相减得(4-p)an+3p(an-an-1)=0.
(4+2p)an=3pan-1,故
=
(n≥2).
∴数列{an}是以1为首项、
为公比的等比数列.
(2)当p=-4时,公比q=
=3.
∴a4=a1q3=27.9分
(3)f(p)=
,b1=a1=1,∵bn=
f(bn-1)=
·
(n≥2),
∴
,即
=
(n≥2).故数列{
}是以
=1为首项、
为公差的等差数列.
∴
=1+
(n-1)=
.∴bn=
(n≥1).