题目内容

(理)设数列{an}的前n项和为Sn,满足(4-p)Sn+3pan=2p+4,其中p为常数,且p<-2,n∈N*.

(1)求证:数列{an}是等比数列,并求出数列{an}的通项公式;

(2)若数列{an}的公比q=f(p),数列{bn}满足b1=a1,bn=f(bn-1)(n≥2),求数列{bn}的通项公式;

(3)在(2)的条件下,若(bnlgan)=lg(p),求实数p的值.

(文)设数列{an}的前n项和为Sn,满足(4-p)Sn+3pan=2p+4,其中p为常数,且p<-2,n∈N*.

(1)求a1并证明数列{an}是等比数列;

(2)若p=-4,求a4的值;

(3)若数列{an}的公比q=f(p),数列{bn}满足b1=a1,bn=f(bn-1)(n≥2),求数列{bn}的通项公式.

答案:(理)(1)证明:当n=1时,由(4-p)a1+3pa1=2p+4,得(2p+4)a1=2p+4.∵p<-2,2p+4≠0,∴a1=1.

又由(4-p)Sn+3pan=2p+4,(4-p)Sn-1+3pan-1=2p+4(n≥2).

两式相减得(4-p)an+3p(an-an-1)=0,(4+2p)an=3pan-1.故(n≥2).

∴数列{an}是以1为首项、为公比的等比数列.

∴an=.

(2)解:f(p)=,b1=a1=1.∵bn=f(bn-1)=(n≥2),

,即(n≥2).

故数列{}是以=1为首项、为公差的等差数列.

=1+(n-1)=.∴bn=(n≥1).

(3)解:由(bnlgan)=lg(),

又bnlgan=lg()n-1=,

(bnlgan)=2lg()=lg().∴()2=.

化简为p2+5p+4=0,解得p=-1与p=-4.由题意知p<-2,故舍去-1,得p=-4.

(文)解:(1)当n=1时,由(4-p)a1+3pa1=2p+4,得(2p+4)a1=2p+4.

∵p<-2,2p+4≠0,∴a1=1.

又由(4-p)Sn+3pan=2p+4,(4-p)Sn-1+3pan-1=2p+4(n≥2),两式相减得(4-p)an+3p(an-an-1)=0.

(4+2p)an=3pan-1,故=(n≥2).

∴数列{an}是以1为首项、为公比的等比数列.

(2)当p=-4时,公比q==3.

∴a4=a1q3=27.9分

(3)f(p)=,b1=a1=1,∵bn=f(bn-1)=·(n≥2),

,即=(n≥2).故数列{}是以=1为首项、为公差的等差数列.

=1+(n-1)=.∴bn=(n≥1).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网