题目内容
若(
+
)n展开式中前三项的系数成等差数列,求:
(1)展开式中所有x的有理项;
(2)展开式中系数最大的项.
| x |
| 1 | |||
2
|
(1)展开式中所有x的有理项;
(2)展开式中系数最大的项.
易求得展开式前三项的系数为 1,
,
.(2分)
据题意 2×
=1+
(3分)?n=8(4分)
(1)设展开式中的有理项为Tr+1,由Tr+1=
(
)8-r(
)r=(
)r
x
∴r为4的倍数,又0≤r≤8,∴r=0,4,8.(6分)
Tr+1=
(
)8-r(
)r=(
)r
x
故有理项为:T1=(
)0
x
=x4,
T5=(
)4
x
=
x,
T9=(
)8
x
=
.(8分)
(2)设展开式中Tr+1项的系数最大,则:(
)r
≥(
)r+1
且(
)r
≥(
)r-1
(10分)
?r=2或r=3
故展开式中系数最大项为:T3=(
)2
x
=7x
T4=(
)3
x
=7x
.(12分)
| 1 |
| 2 |
| C | 1n |
| 1 |
| 4 |
| C | 2n |
据题意 2×
| 1 |
| 2 |
| C | 1n |
| 1 |
| 4 |
| C | 2n |
(1)设展开式中的有理项为Tr+1,由Tr+1=
| C | r8 |
| x |
| 1 | |||
2
|
| 1 |
| 2 |
| C | r8 |
| 16-3r |
| 4 |
∴r为4的倍数,又0≤r≤8,∴r=0,4,8.(6分)
Tr+1=
| C | r8 |
| x |
| 1 | |||
2
|
| 1 |
| 2 |
| C | r8 |
| 16-3r |
| 4 |
故有理项为:T1=(
| 1 |
| 2 |
| C | 08 |
| 16-3×0 |
| 4 |
T5=(
| 1 |
| 2 |
| C | 48 |
| 16-3×4 |
| 4 |
| 35 |
| 8 |
T9=(
| 1 |
| 2 |
| C | 88 |
| 16-3×8 |
| 4 |
| 1 |
| 256x2 |
(2)设展开式中Tr+1项的系数最大,则:(
| 1 |
| 2 |
| C | r8 |
| 1 |
| 2 |
| C | r+18 |
| 1 |
| 2 |
| C | r8 |
| 1 |
| 2 |
| C | r-18 |
?r=2或r=3
故展开式中系数最大项为:T3=(
| 1 |
| 2 |
| C | 28 |
| 16-3×2 |
| 4 |
| 5 |
| 2 |
| 1 |
| 2 |
| C | 38 |
| 16-3×3 |
| 4 |
| 7 |
| 4 |
练习册系列答案
相关题目