题目内容
(1)用向量法证明E,F,G,H(2)四点共面;
(2)用向量法证明:BD∥平面EFGH;
(3)设M是EG和FH的交点,求证:对空间任一点O,有
| OM |
| 1 |
| 4 |
| OA |
| OB |
| OC |
| OD |
分析:(1)用向量的加法求出
=
+
,即可证明E,F,G,H(2)四点共面;
(2)用向量表示
=
,就证明EH∥BD,又EH?面EFGH,BD不在 面EFGH,所以BD∥平面EFGH;
(3)M是EG和FH的交点,利用
=
推出EG、FH交于一点M且被M平分,然后推出
=
(
+
+
+
).
| EG |
| EF |
| EH |
(2)用向量表示
| EH |
| 1 |
| 2 |
| BD |
(3)M是EG和FH的交点,利用
| EH |
| 1 |
| 2 |
| BD |
| OM |
| 1 |
| 4 |
| OA |
| OB |
| OC |
| OD |
解答:证明:(1)连接BG,则
=
+
=
+
(
+
)=
+
+
=
+
由共面向量定理的推论知:E、F、G、H四点共面,(其中
=
)
(2)因为
=
-
=
-
=
(
-
)=
.
所以EH∥BD,又EH?面EFGH,BD不在 面EFGH
所以BD∥平面EFGH.
(3)连接OM,OA,OB,OC,OD,OE,OG
由(2)知
=
,同理
=
,所以
=
,
EH∥FG,EH=FG,所以EG、FH交于一点M且被M平分,
所以
=
(
+
)=
[
(
+
)+
(
+
)]
=
(
+
+
+
)
| EG |
| EB |
| BG |
| EB |
| 1 |
| 2 |
| BC |
| BD |
| EB |
| BF |
| EH |
| EF |
| EH |
由共面向量定理的推论知:E、F、G、H四点共面,(其中
| 1 |
| 2 |
| BD |
| EH |
(2)因为
| EH |
| AH |
| AE |
| 1 |
| 2 |
| AD |
| 1 |
| 2 |
| AB |
| 1 |
| 2 |
| AD |
| AB |
| 1 |
| 2 |
| BD |
所以EH∥BD,又EH?面EFGH,BD不在 面EFGH
所以BD∥平面EFGH.
(3)连接OM,OA,OB,OC,OD,OE,OG
由(2)知
| EH |
| 1 |
| 2 |
| BD |
| FG |
| 1 |
| 2 |
| BD |
| EH |
| FG |
EH∥FG,EH=FG,所以EG、FH交于一点M且被M平分,
所以
| OM |
| 1 |
| 2 |
| OE |
| OG |
| 1 |
| 2 |
| 1 |
| 2 |
| OA |
| OB |
| 1 |
| 2 |
| OC |
| OD |
=
| 1 |
| 4 |
| OA |
| OB |
| OC |
| OD |
点评:本题考查向量语言表述线面的垂直、平行关系,共线向量与共面向量,考查运算能力,是中档题.
练习册系列答案
相关题目