题目内容
已知向量
=(λsinα,λcosα),
=(cosβ,sinβ),且α+β=4.
(1)求
,
的夹角θ的大小;
(2)求|
|的最小值.
| OA |
| OB |
(1)求
| OA |
| OB |
(2)求|
| AB |
(1)|
|=|λ|,|
|=1
•
=λ(sinαcosβ+cosαsinβ)=λsin4
cosθ=
=
.
当λ>0时,cosθ=sin4=cos(4-
),
因0≤θ≤π,0≤4-
≤π,故θ=4-
;
当λ<0时,cosθ=-sin4=cos(
-4),
因0≤θ≤π,0≤
-4≤π,故θ=
-4
(2)|
|2=(
-
)2
=
2-2
•
+
2
=λ2-2λsin(α+β)+1
=λ2-2λsin4+cos24+sin24
=(λ-sin4)2+cos24
≥cos24
所以|
|的最小值为-cos4.
| OA |
| OB |
| OA |
| OB |
cosθ=
| ||||
|
|
| λsin4 |
| |λ| |
当λ>0时,cosθ=sin4=cos(4-
| π |
| 2 |
因0≤θ≤π,0≤4-
| π |
| 2 |
| π |
| 2 |
当λ<0时,cosθ=-sin4=cos(
| 3π |
| 2 |
因0≤θ≤π,0≤
| 3π |
| 2 |
| 3π |
| 2 |
(2)|
| AB |
| OB |
| OA |
=
| OB |
| OB |
| OA |
| OA |
=λ2-2λsin(α+β)+1
=λ2-2λsin4+cos24+sin24
=(λ-sin4)2+cos24
≥cos24
所以|
| AB |
练习册系列答案
相关题目