题目内容
14.在平面直角坐标系中,若不等式组$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{ax-y+1≥0}\end{array}\right.$,(a为常数)表示的区域面积等于3,则a的值为( )| A. | -5 | B. | -2 | C. | 2 | D. | 5 |
分析 本题主要考查线性规划的基本知识,先画出约束条件的可行域,根据已知条件中,表示的平面区域的面积等于3,构造关于a的方程,解方程即可得到答案.
解答
解:不等式组$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{ax-y+1≥0}\end{array}\right.$,(a为常数)围成的区域如图所示.
∵由于x,y的不等式组所表示的平面区域的面积等于3,
∴$\frac{1}{2}$×|AC|×|xA-xB|=3,解得|AC|=6,
∴C的坐标为(1,6),
由于点C在直线ax-y+1=0上,
则a-6+1=0,解得a=5.
故选:D.
点评 平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解.
练习册系列答案
相关题目
19.某农业科研实验室,对春季昼夜温差大小与某蔬菜种子发芽多少之间的关系进行研究,分别记录了3月1日至3月6日的每天昼夜温差与实验室每天每100粒种子浸泡后的发芽数,得到如表数据:
(1)求此种蔬菜种子在这6天的平均发芽率;
(2)从3月1日至3月6日这六天中,按照日期从前往后的顺序任选2天记录发芽的种子数分别为m,n,用(m,n)的形式列出所有基本事件,并求满足$\left\{\begin{array}{l}{25≤m≤30}\\{25≤n≤30}\end{array}\right.$的事件A的概率.
| 日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 | 3月6日 |
| 昼夜温差(℃) | 9 | 11 | 13 | 12 | 8 | 10 |
| 发芽数(粒) | 23 | 25 | 30 | 26 | 16 | 24 |
(2)从3月1日至3月6日这六天中,按照日期从前往后的顺序任选2天记录发芽的种子数分别为m,n,用(m,n)的形式列出所有基本事件,并求满足$\left\{\begin{array}{l}{25≤m≤30}\\{25≤n≤30}\end{array}\right.$的事件A的概率.
6.已知集合A={x|y=$\sqrt{x-4}$},B={x|-1≤2x-1≤0},则∁RA∩B=( )
| A. | (4,+∞) | B. | [0,$\frac{1}{2}$] | C. | ($\frac{1}{2}$,4] | D. | (1,4) |