题目内容
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)证明:数列{an-n}是等比数列,并求数列{an}的通项公式;
(2)记bn=
,数列{bn}的前n项和为Sn,求证:Sn+bn>
.
(1)证明:数列{an-n}是等比数列,并求数列{an}的通项公式;
(2)记bn=
| n |
| an-n |
| 16 |
| 9 |
(1)∵数列{an}中,a1=2,an+1=4an-3n+1,n∈N*,
∴an+1-(n+1)=4(an-n),n∈N*,a1-1=1,
∴数列{an-n}是首项为1,且公比为4的等比数列,
∴an-n=1×4n-1,an=4n-1+n.
(2)由(1)得bn=
=
,
∴Sn=1+2×
+3×
+…+(n-1)×
+n×
,
则
Sn=1×
+2×
+…+(n-1)×
+n×
,
相减得
Sn=(1+
+
+…+
)-n×
=
(1-
)-n×
,
∴Sn=
(1-
)-
,
∴Sn+bn=
-
×
-
+
=
+
•(2n-
),
∵n≥1,∴2n-
>0,
∴Sn+bn>
.
∴an+1-(n+1)=4(an-n),n∈N*,a1-1=1,
∴数列{an-n}是首项为1,且公比为4的等比数列,
∴an-n=1×4n-1,an=4n-1+n.
(2)由(1)得bn=
| n |
| an-n |
| n |
| 4n-1 |
∴Sn=1+2×
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n-2 |
| 1 |
| 4n-1 |
则
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n-1 |
| 1 |
| 4n |
相减得
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 42 |
| 1 |
| 4n-1 |
| 1 |
| 4n |
| 4 |
| 3 |
| 1 |
| 4n |
| 1 |
| 4n |
∴Sn=
| 16 |
| 9 |
| 1 |
| 4n |
| n |
| 3×4n-1 |
∴Sn+bn=
| 16 |
| 9 |
| 16 |
| 9 |
| 1 |
| 4n |
| n |
| 3×4n-1 |
| n |
| 4n-1 |
=
| 16 |
| 9 |
| 1 |
| 3×4n-1 |
| 4 |
| 3 |
∵n≥1,∴2n-
| 4 |
| 3 |
∴Sn+bn>
| 16 |
| 9 |
练习册系列答案
相关题目