题目内容

12.已知等差数列{an}的前n项和为Sn,a8=8,S8=36,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前100项和为(  )
A.$\frac{100}{101}$B.$\frac{99}{101}$C.$\frac{99}{100}$D.$\frac{101}{100}$

分析 利用等差数列的通项公式及其前n项和公式、“裂项求和”即可得出.

解答 解:设等差数列{an}的公差为d,∵a8=8,S8=36,
∴$\left\{\begin{array}{l}{{a}_{1}+7d=8}\\{8{a}_{1}+\frac{8×7}{2}d=36}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=1}\end{array}\right.$,
∴an=1+(n-1)=n.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前100项和=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{100}-\frac{1}{101})$=1-$\frac{1}{101}$=$\frac{100}{101}$.
故选:A.

点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网