题目内容
【题目】数列{an}满足a1=1,对任意n∈N*都有an+1=an+n+1,则
=( )
A.
B.
C.
D.![]()
【答案】B
【解析】
由题意可得n≥2时,an-an-1=n,再由数列的恒等式:an=a1+(a2-a1)+(a3-a2)+…+(an-an-1),运用等差数列的求和公式,可得an,求得
=
=2(
-
),由数列的裂项相消求和,化简计算可得所求和.
解:数列{an}满足a1=1,对任意n∈N*都有an+1=an+n+1,
即有n≥2时,an-an-1=n,
可得an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=1+2+3+…+n=
n(n+1),
也满足上式
=
=2(
-
),
则
=2(1-
+
-
+…+
-
)
=2(1-
)=
.
故选:B.
练习册系列答案
相关题目