题目内容
【题目】(某保险公司有一款保险产品的历史户获益率(获益率=获益÷保费收入)的频率分布直方图如图所示:
![]()
(Ⅰ)试估计平均收益率;
(Ⅱ)根据经验若每份保单的保费在
元的基础上每增加
元,对应的销量
(万份)与
(元)有较强线性相关关系,从历史销售记录中抽样得到如下
组
与
的对应数据:
|
|
|
|
|
|
销量 |
|
|
|
|
|
(ⅰ)根据数据计算出销量
(万份)与
(元)的回归方程为
;
(ⅱ)若把回归方程
当作
与
的线性关系,用(Ⅰ)中求出的平均获益率估计此产品的获益率,每份保单的保费定为多少元时此产品可获得最大获益,并求出该最大获益.
参考公示: ![]()
【答案】(I)
;(II)(ⅰ)
,(ⅱ)
.
【解析】试题分析:(1)利用频率分布直方图计算出平均收益率;(2)利用公式计算出
,
,从而得到回归直线方程;进一步算出最大获益即可.
试题解析:
(Ⅰ)区间中值依次为:0.05,0.15,0.25,0.35,0.45,0.55,
取值概率依次为:0.1,0.2,0.25,0.3,0.1,0.05,
平均获益率为![]()
(Ⅱ)(i)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |||||
![]()
则
即
.
(ii)设每份保单的保费为
元,则销量为
,则保费获益为
万元, ![]()
当
元时,保费收入最大为
万元,保险公司预计获益为
万元.
【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
![]()
非体育迷 | 体育迷 | 合计 | |
男 | |||
女 | 10 | 55 | |
合计 |
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
(1)根据已知条件完成上面的2×2列联表,若按95%的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?
(2)现在从该地区非体育迷的电视观众中,采用分层抽样方法选取5名观众,求从这5名观众选取两人进行访谈,被抽取的2名观众中至少有一名女生的概率.
附:![]()
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |