题目内容

 

设函数定义在上,,导函数

(1)求的单调区间和最小值;

(2)讨论的大小关系;

(3)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

 

 

【答案】

 【分析】(1)先求出原函数,再求得,然后利用导数判断函数的单调性(单调区间),并求出最小值;(2)作差法比较,构造一个新的函数,利用导数判断函数的单调性,并由单调性判断函数的正负;(3)存在性问题通常采用假设存在,然后进行求解;注意利用前两问的结论.

【解】(1)∵,∴为常数),又∵,所以,即

,令,即,解得

时,是减函数,故区间在是函数的减区间;

时,是增函数,故区间在是函数的增区间;

所以的唯一极值点,且为极小值点,从而是最小值点,

所以的最小值是

(2),设

时,,即

时,

因此函数内单调递减,

时,=0,∴

时,=0,∴

(3)满足条件的不存在.证明如下:

证法一  假设存在,使对任意成立,

即对任意              ①

但对上述的,取时,有,这与①左边的不等式矛盾,

因此不存在,使对任意成立.

证法二  假设存在,使对任意成立,

由(1)知,的最小值是

,而时,的值域为

∴当时,的值域为

从而可以取一个值,使,即,

,这与假设矛盾.

∴不存在,使对任意成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网