题目内容
已知
=(cosx,
sinx),
=(cosx,cosx),设f(x)=
•
.
(1)求函数f(x)的图象的对称轴及其单调递增区间;
(2)当x∈[0,
],求函数f(x)的值域及取得最大值时x的值;
(3)若b、c分别是锐角△ABC的内角B、C的对边,且b•c=
-
,f(A)=
,试求△ABC的面积S.
| m |
| 3 |
| n |
| m |
| n |
(1)求函数f(x)的图象的对称轴及其单调递增区间;
(2)当x∈[0,
| π |
| 2 |
(3)若b、c分别是锐角△ABC的内角B、C的对边,且b•c=
| 6 |
| 2 |
| 1 |
| 2 |
(1)因为f(x)=
•
=cosxcosx+
cosxsinx=cos2x+
sinxcosx
=
=sin(2x+
)+
所以对称轴方程:x=
+
(k∈Z)
单调递增区间为(-
+kπ,
+kπ)(k∈Z)
(2)当x∈[0,
]时,2x+
∈[
,
],sin(2x+
)∈[-
,1],
sin(2x+
)+
∈[0,
]
所以,当2x+
=
,即x=
,sin(2x+
)+
有最大值为
f(x)的值域为[0,
],x=
是取得最大值
(3)因为f(A)=
,所以sin(2A+
)+
=
,所以A=
sin
=sin(
+
)=sin
cos
+cos
sin
=
s△ABC=
b•csin
=
(
-
)
=
所以△ABC的面积为
.
| m |
| n |
| 3 |
| 3 |
=
cos2x+
| ||
| 2 |
| π |
| 6 |
| 1 |
| 2 |
所以对称轴方程:x=
| π |
| 6 |
| kπ |
| 2 |
单调递增区间为(-
| π |
| 3 |
| π |
| 6 |
(2)当x∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
sin(2x+
| π |
| 6 |
| 1 |
| 2 |
| 3 |
| 2 |
所以,当2x+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
| 3 |
| 2 |
f(x)的值域为[0,
| 3 |
| 2 |
| π |
| 6 |
(3)因为f(A)=
| 1 |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5π |
| 12 |
sin
| 5π |
| 12 |
| π |
| 4 |
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
| ||||
| 4 |
s△ABC=
| 1 |
| 2 |
| 5π |
| 12 |
| 1 |
| 2 |
| 6 |
| 2 |
| ||||
| 4 |
| 1 |
| 2 |
所以△ABC的面积为
| 1 |
| 2 |
练习册系列答案
相关题目